Nature and cause of compositional variation among the alkalic cap lavas of Mauna Kea Volcano, Hawaii
نویسندگان
چکیده
Most Hawaiian basaltic shield volcanoes are capped by moderately to strongly evolved alkalic lavas (MgO < 4.5 wt. %). On M auna Kea Volcano the cap is dominantly composed of hawaiite with minor mugearite. Although these lavas contain dunite and gabbroic xenoliths, they are nearly aphyric with rare olivine and plagioclase phenocrysts and xenocrysts. The hawaiites are nearly homogeneous in radiogenic isotope ratios (Sr, Nd, Pb) and they define coherent major and trace element abundance trends. These compositional trends are consistent with segregation of a plagioclase-rich cumulate containing significant clinopyroxene and Fe-Ti oxides plus minor olivine. Elements which are usually highly incompatible, e.g., Rb, Ba, Nb, are only moderately incompatible within the hawaiite suite because these elements are incorporated into feldspar (Rb, Ba) and oxides (Nb). However, in the most evolved lavas abundances of the most incompatible elements (P, La, Ce, Th) exceed (by ~ 5-10%) the maximum enrichments expected from models based on major elements. Apparently, the crystal fractionation process was more complex than simple, closed system fractionation. The large amounts of clinopyroxene in the fractionating assemblage and the presence of dense dunite xenoliths with CO2 inclusions formed at minimum pressures of 2 kb are consistent with fractionation occurring at moderate depths. Crystal segregation along conduit or magma chamber walls is a possible mechanism for explaining compositional variations within these alkalic cap lavas.
منابع مشابه
Composition of basaltic lavas sampled by phase-2 of the Hawaii Scientific Drilling Project: Geochemical stratigraphy and magma types
[1] This paper presents major and trace element compositions of lavas from the entire 3098 m stratigraphic section sampled by phase-2 of the Hawaii Scientific Drilling Project. The upper 245 m are lavas from Mauna Loa volcano, and the lower 2853 m are lavas and volcanoclastic rocks from Mauna Kea volcano. These intervals are inferred to represent about 100 ka and 400 ka respectively of the erup...
متن کاملTrace element abundances of Mauna Kea basalt from phase 2 of the Hawaii Scientific Drilling Project: Petrogenetic implications of correlations with major element content and isotopic ratios
[1] The temporal geochemical variations defined by lavas erupted throughout the growth of a single volcano provide important information for understanding how the Hawaiian plume works. The Hawaii Scientific Drilling Project (HSDP) sampled the shield of Mauna Kea volcano to a depth of 3100 meters below sea level during Phase 2 of the HSDP. Incompatible element abundance ratios, such as La/Yb, Sm...
متن کاملOxygen isotope ratios in olivine from the Hawaii Scientific Drilling Project
Oxygen isotope ratios of olivine in 23 tholeiites from the Hawaii Scientific Drilling Project (HSDP) core (15 from Mauna Kea, 8 from Mauna Loa) and three samples of outcropping subaerial or dredged submarine Mauna Kea lavas have been measured by laser fluorination. The ~18o values are 4.6-5.4 %o, confirming previous observations that some Hawaiian lavas are derived from sources with ~18o values...
متن کاملModels of Hawaiian volcano growth and plume structure: Implications of results from the Hawaii Scientific Drilling Project
The shapes of typical Hawaiian volcanoes are simply parameterized, and a relationship is derived for the dependence of lava accumulation rates on volcano volume and volumetric growth rate. The dependence of lava accumulation rate on time is derived by estimating the eruption rate of a volcano as it traverses the Hawaiian plume, with the eruption rate determined from a specified radial dependenc...
متن کاملSubmarine growth and internal structure of ocean island volcanoes based on submarine observations of Mauna Loa volcano, Hawaii
Figure 1. Relief map of island of Hawaii (after Moore et al., 1995) showing locations of dive sites (triangles, except dive 389, which is a square), locations of shield volcanoes (L—Loihi, K—Kilauea, ML— Mauna Loa, H—Hualalai, MK—Mauna Kea, Ko—Kohala), areas of recent Kilauea eruptions along south coast of Hawaii (u—Mauna Ulu, p—Puu Oo), rift zones of Mauna Loa (parallel lines), large, ca. 100 ...
متن کامل